федеральное государственное бюджетное образовательное учреждение высшего образования

«МИЧУРИНСКИЙ ГОСУДАРСТВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ»

Центр-колледж прикладных квалификаций

УТВЕРЖДЕНА решением учебно-методического совета университета (протокол от 18 апреля 2024 г. № 8)

УТВЕРЖДАЮ
Председатель учебно-методического совета университета
С.В. Соловьёв
«18» апреля 2024 г.

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ ОУД. 10 ХИМИЯ

Специальность 19.02.05 Технология бродильных производств и виноделие Базовая подготовка

Мичуринск - 2024

СОДЕРЖАНИЕ

Пояснительная записка	3
Общая характеристика учебной дисциплины «Химия»	3
Место учебной дисциплины в учебном плане	
Результаты освоения учебной дисциплины	
Содержание учебной дисциплины	
Тематическое планирование	
Тематический план	
Характеристика основных видов учебной деятельности обучающихся	25
Учебно-методическое и материально-техническое обеспечение программы	
учебной дисциплины «Химия»	27
Рекомендуемая литература	

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Рабочая программа учебной дисциплине «Химия» предназначена для изучения химии в центре-колледже прикладных квалификаций ФГБОУ ВО Мичуринский ГАУ, реализующем образовательную программу среднего обще образования в пределах освоения основной профессиональной образовательной программы СПО на базе основного общего образования при подготовке кадров по специальности 19.02.05 Технология бродильных производств и виноделие.

Рабочая программа разработана на основе требований ФГОС среднего общего образования, предъявляемых к структуре, содержанию и результатам освоения учебной дисциплины «Химия», в соответствии с методическими рекомендациями по реализации среднего общего образования в пределах освоения образовательной программы среднего профессионального образования на базе основного общего образования, утвержденными Министерством просвещения Российской Федерации 14.04.2021 года.

Содержание программы «Химия» направлено на достижение следующих целей:

- формирование у обучающихся умения оценивать значимость химического знания для каждого человека;
- формирование у обучающихся целостного представления о мире и роли химии в создании современной естественно-научной картины мира; умения объяснять объекты и процессы окружающей действительности: природной, социальной, культурной, технической среды, используя для этого химические знания;
- развитие у обучающихся умений различать факты и оценки, сравнивать оценочные выводы, видеть их связь с критериями оценок и связь критериев с определенной системой ценностей, формулировать и обосновывать собственную позицию;
- приобретение обучающимися опыта разнообразной деятельности, познания и самопознания; ключевых навыков, имеющих универсальное значение для различных видов деятельности (навыков решения проблем, принятия решений, поиска, анализа и обработки информации, коммуникативных навыков, навыков измерений, сотрудничества, безопасного обращения с веществами в повседневной жизни).

В программу включено содержание, направленное на формирование у обучающихся компетенций, необходимых для качественного освоения ОПОП СПО на базе основного общего образования с получением среднего общего образования; программы подготовки специалистов среднего звена по специальности 19.02.05 Технология бродильных производств и виноделие.

ОБЩАЯ ХАРАКТЕРИСТИКА УЧЕБНОЙ ДИСЦИПЛИНЫ «ХИМИЯ»

Химия — это наука о веществах, их составе и строении, свойствах и превращениях, значении химических веществ, материалов и процессов в практической деятельности человека.

Содержание общеобразовательной учебной дисциплины «Химия» направлено на усвоение обучающимися основных понятий, законов и теорий химии; овладение умениями наблюдать химические явления, проводить химический эксперимент, производить расчеты на основе химических формул веществ и уравнений химических реакций.

В процессе изучения химии у обучающихся развиваются познавательные интересы и

интеллектуальные способности, потребности в самостоятельном приобретения знаний по химии в соответствии с возникающими жизненными проблемами, воспитывается бережное отношения к природе, понимание здорового образа жизни, необходимости предупреждения явлений, наносящих вред здоровью и окружающей среде.

Они осваивают приемы грамотного, безопасного использования химических веществ и материалов, применяемых в быту, сельском хозяйстве и на производстве.

Реализация дедуктивного подхода к изучению химии способствует развитию таких логических операций мышления, как анализ и синтез, обобщение и конкретизация, сравнение и аналогия, систематизация и классификация и др.

Изучение химии имеет свои особенности в зависимости от профиля профессионального образования.

В содержании учебной дисциплины для специальности 19.02.05 Технология бродильных производств и виноделие естественнонаучного профиля профессионально значимый компонент не выделен, так как все его содержание является профильно ориентированным и носит профессионально значимый характер.

В процессе изучения химии теоретические сведения дополняются демонстрациями, лабораторными опытами и практическими занятиями. Значительное место отводится химическому эксперименту. Он открывает возможность формировать у обучающихся специальные предметные умения: работать с веществами, выполнять простые химические опыты, учить безопасному и экологически грамотному обращению с веществами, материалами и процессами в быту и на производстве.

Для организации внеаудиторной самостоятельной работы обучающихся представлен примерный перечень рефератов (докладов), индивидуальных проектов.

В процессе изучения химии важно формировать информационную компетентность обучающихся. Поэтому при организации самостоятельной работы акцентируется внимание обучающихся на поиске информации в средствах массмедиа, Интернете, учебной и специальной литературе с соответствующим оформлением и представлением результатов.

В программе знаком * выделен материал, который отводится на самостоятельное изучение обучающимися.

Изучение общеобразовательной учебной дисциплины «Химия» завершается подведением итогов в форме экзамена в первом семестре и дифференцированного зачета во втором семестре в рамках промежуточной аттестации студентов в процессе освоения ОПОП СПО по специальности 19.02.05 Технология бродильных производств и виноделие.

МЕСТО УЧЕБНОЙ ДИСЦИПЛИНЫ В УЧЕБНОМ ПЛАНЕ

Учебная дисциплина «Химия» входит в состав предметной области 9.4. Естественные науки ФГОС СОО и общеобразовательного цикла ППССЗ специальности 19.02.05 Технология бродильных производств и виноделие (базовая подготовка).

РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧЕБНОЙ ДИСЦИПЛИНЫ

Освоение содержания учебной дисциплины «Химия», обеспечивает достижение студентами следующих результатов:

• личностных:

4

- чувство гордости и уважения к истории и достижениям отечественной химической науки; химически грамотное поведение в профессиональной деятельности и в быту при обращении с химическими веществами, материалами и процессами;
- готовность к продолжению образования и повышения квалификации в избранной профессиональной деятельности и объективное осознание роли химических компетенций в этом;
- умение использовать достижения современной химической науки и химических технологий для повышения собственного интеллектуального развития в выбранной профессиональной деятельности;

• метапредметных:

- использование различных видов познавательной деятельности и основных нтеллектуальных операций (постановки задачи, формулирования гипотез, анализа и синтеза, сравнения, обобщения, систематизации, выявления причинно-следственных связей, поиска аналогов, формулирования выводов) для решения поставленной задачи, применение основных методов познания (наблюдения, научного эксперимента) для изучения различных сторон химических объектов и процессов, с которыми возникает необходимость сталкиваться в профессиональной сфере;
- использование различных источников для получения химической информации, умение оценить ее достоверность для достижения хороших результатов в профессиональной сфере; *предметных*:
- сформированность представлений о месте химии в современной научной картине мира; понимание роли химии в формировании кругозора и функциональной грамотности человека для решения практических задач;
- владение основополагающими химическими понятиями, теориями, законами и закономерностями; уверенное пользование химической терминологией и символикой;
- владение основными методами научного познания, используемыми в химии: наблюдением, описанием, измерением, экспериментом; умением обрабатывать, объяснять результаты проведенных опытов и делать выводы; готовность и способность применять методы познания при решении практических задач;
- сформированность умения давать количественные оценки и производить расчеты по химическим формулам и уравнениям;
- владение правилами техники безопасности при использовании химических веществ;
- сформированность собственной позиции по отношению к химической информации, получаемой из разных источников.

Содержание общеобразовательной учебной дисциплины Химия Введение

Научные методы познания веществ и химических явлений. Роль эксперимента и теории в химии. Значение химии при освоении профессии.

1. Органическая химия

1.1. Предмет органической химии. Теория строения органических соединений

Предмет органической химии. Понятие об органическом веществе и органической химии. *Краткий очерк истории развития органической химии. Витализм и его крушение.* Особенности строения органических соединений. Круговорот углерода в природе. Теория строения органических соединений А.М.Бутлерова. Предпосылки создания теории строения. Основные положения теории строения А.М.Бутлерова. Химическое строение и свойства органических веществ. Понятие об изомерии. Способы отображения строения молекулы (формулы, модели). Значение теории А.М. Бутлерова для развития органической химии и химических прогнозов. Строение атома углерода. Электронное облако и орбиталь, *s*- и *p*-орбитали. Электронные и электронно-графические формулы атома углерода в основном и возбужденном состояниях. Ковалентная химическая связь и ее классификация по способу перекрывания орбиталей (σ- и π-связи). Понятие гибридизации. Различные типы гибридизации и форма атомных орбиталей, взаимное отталкивание гибридных орбиталей и их расположение в пространстве в соответствии с минимумом энергии. Геометрия молекул веществ, образованных атомами углерода в различных состояниях гибридизации.

Классификация органических соединений. Классификация органических веществ в зависимости от строения углеродной цепи. Понятие функциональной группы. Классификация органических веществ по типу функциональной группы. Основы номенклатуры органических веществ. Тривиальные названия. Рациональная номенклатура как предшественница номенклатуры IUPAC. Номенклатура IUPAC: принципы образования названий, старшинство функциональных групп, их обозначение в префиксах и суффиксах названий органических веществ.

Типы химических связей в органических соединениях и способы их разрыва. Классификация ковалентных связей по электроотрицательности связанных атомов, способу перекрывания орбиталей, кратности, механизму образования. Связь природы химической связи с типом кристаллической решетки вещества и его физическими свойствами. Разрыв химической связи как процесс, обратный ее образованию. Гомолитический и гетеролитический разрывы связей, их сопоставление с обменным и донорно-акцепторным механизмами их образования. Понятие свободного радикала, нуклеофильной и электрофильной частицы.

Классификация реакций в органической химии. Понятие о типах и механизмах реакций в органической химии. Субстрат и реагент. Классификация реакций по изменению в структуре субстрата (присоединение, отщепление, замещение, изомеризация) и типу реагента (радикальные, нуклеофильные, электрофильные). Особенности окислительновосстановительных реакций в органической химии.

Современные представления о химическом строении органических веществ.

Основные направления развития теории строения А. М. Бутлерова. Изомерия органических веществ и ее виды. Структурная изомерия: межклассовая, углеродного скелета, положения кратной связи и функциональной группы. Пространственная изомерия: геометрическая и оптическая. Понятие асимметрического центра. Биологическое значение оптической изомерии. Взаимное влияние атомов в молекулах органических веществ. *Электронные эффекты атомов и атомных групп в органических молекулах. Индукционный эффект,

положительный и отрицательный, его особенности. Мезомерный эффект (эффект сопряжения), его особенности.*

Демонстрации

Коллекции органических веществ (в том числе лекарственных препаратов, красителей), материалов (природных и синтетических каучуков, пластмасс и волокон) и изделий из них (нитей, тканей, отделочных материалов).

Модели молекул СН₄, С₂Н₄, С₂Н₂, С₆Н₆, СН₃ОН — шаростержневые и объемные.

Модели отталкивания гибридных орбиталей с помощью воздушных шаров.

Взаимодействие натрия с этанолом и отсутствие взаимодействия с диэтиловым эфиром.

1.2. Предельные углеводороды

Гомологический ряд алканов. Понятие об углеводородах. Особенности строения предельных углеводородов. Алканы как представители предельных углеводородов. Электронное и пространственное строение молекулы метана и других алканов. Гомологический ряд и изомерия парафинов. Нормальное и разветвленное строение углеродной цепи. Номенклатура алканов и алкильных заместителей. Физические свойства алканов. Алканы в природе.

Химические свойства алканов. Реакции SR-типа: галогенирование, нитрование по Коновалову. Механизм реакции хлорирования алканов. Реакции дегидрирования, горения, каталитического окисления алканов. Крекинг алканов, различные виды крекинга, применение в промышленности. Пиролиз и конверсия метана, изомеризация алканов.

Применение и способы получения алканов. Области применения алканов. Промышленные способы получения алканов: получение из природных источников, крекинг парафинов, получение синтетического бензина, газификация угля, гидрирование алканов.

Лабораторные способы получения алканов: синтез Вюрца, декарбоксилирование, гидролиз карбида алюминия.

Циклоалканы. Гомологический ряд и номенклатура циклоалканов, их общая формула. Понятие о напряжении цикла. Изомерия циклоалканов: межклассовая, углеродного скелета, геометрическая. Получение и физические свойства циклоалканов. Химические свойства циклоалканов. Специфика свойств циклоалканов с малым размером цикла. Реакции присоединения и радикального замещения.

Демонстрации

Модели молекул метана, других алканов, различных конформаций циклогексана. Плавление парафина и его отношение к воде (растворимость, плотность, смачивание).. Горение метана, пропан-бутановой смеси, парафина.

Отношение циклогексана к бромной воде и раствору перманганата калия.

Практическое занятие №1: «Получение метана и изучение его свойств(горение, отношение к бромной воде и раствору перманганата калия).номенклатура алканов»

Практическое занятие №2: «Обнаружение воды, углекислого газа в продуктах горения свечи. Ознакомление со свойствами твердых парафинов (плавление, растворимость, отсутствием взаимодействия с бромной водой, растворами перманганата калия)»

1.3. Этиленовые и диеновые углеводороды

Гомологический ряд алкенов. Электронное и пространственное строение молекулы

этилена и алкенов. Гомологический ряд и общая формула алкенов. Изомерия этиленовых углеводородов: межклассовая, углеродного скелета, положения кратной связи, геометрическая. Особенности номенклатуры этиленовых углеводородов, названия важнейших радикалов. Физические свойства алкенов.

Химические свойства алкенов. Электрофильный характер реакций, склонность к реакциям присоединения, окисления, полимеризации. Правило Марковникова и его электронное обоснование. Реакции галогенирования, гидрогалогенирования, гидратации, гидрирования. Механизм АЕ-реакций. Понятие о реакциях полимеризации. Горение алкенов. Реакции окисления. *Реакция Вагнера и ее значение для обнаружения непредельных углеводородов, получения гликолей.*

Применение и способы получения алкенов. Использование высокой реакционной способности алкенов в химической промышленности. Применение этилена и пропилена. Промышленные способы получения алкенов. Реакции дегидрирования и крекинга алкенов. Лабораторные способы получения алкенов.

Алкадиены. Понятие и классификация диеновых углеводородов по взаимному расположению кратных связей в молекуле. Особенности электронного и пространственного строения сопряженных диенов. Понятие о π-электронной системе. Номенклатура диеновых углеводородов. Особенности химических свойств сопряженных диенов как следствие их электронного строения. Реакции 1,4-присоединения. Полимеризация диенов. Способы получения диеновых углеводородов: работы С.В.Лебедева, дегидрирование алканов.

Основные понятия химии высокомолекулярных соединений (на примере продуктов полимеризации алкенов, алкадиенов и их галогенпроизводных). Мономер, полимер, реакция полимеризации, степень полимеризации, структурное звено. Типы полимерных цепей: линейные, разветвленные, сшитые. Понятие о стереорегулярных полимерах. Полимеры термопластичные и термореактивные. Представление о пластмассах и эластомерах. Полиэтилен высокого и низкого давления, его свойства и применение. Полипропилен, его применение и свойства.* Галогенсодержащие полимеры: тефлон, поливинилхлорид.* Каучуки натуральный и синтетические. Сополимеры (бутадиенстирольный каучук). Вулканизация каучука, резина и эбонит.

Демонстрации

Модели молекул структурных и пространственных изомеров алкенов и алкадиенов. Коллекция «Каучук и резина».

Обнаружение непредельных соединений в керосине, скипидаре.

Ознакомление с образцами полиэтилена и полипропилена.

Распознавание образцов алканов и алкенов.

Практическая работа №:3 «Получение этилена и изучение его свойства (взаимодействие этилена с бромной водой, раствором перманганата калия. Номенклатура алкенов».

1.4. Ацетиленовые углеводороды

Гомологический ряд алкинов. Электронное и пространственное строение ацетилена и других алкинов. Гомологический ряд и общая формула алкинов. Номенклатура ацетиленовых углеводородов. Изомерия межклассовая, углеродного скелета, положения кратной связи.

Химические свойства и применение алкинов. Особенности реакций присоединения по тройной углерод-углеродной связи. Реакция Кучерова. Правило Марковникова

применительно к ацетиленам. Подвижность атома водорода (кислотные свойства алкинов). Окисление алкинов. Реакция Зелинского. Применение ацетиленовых углеводородов. Поливинилацетат.

Получение алкинов. Получение ацетилена пиролизом метана и карбидным методом. *Пемонстрации*

Модели молекулы ацетилена и других алкинов.

Получение ацетилена из карбида кальция, ознакомление с физическими и химическими свойствами ацетилена: растворимостью в воде, горением, взаимодействием с бромной водой, раствором перманганата калия, солями меди (I) и серебра.

Практическая работа №:4 «Получение и свойства ацетилена. Номенклатура алкинов».

1.5. Ароматические углеводороды

Гомологический ряд аренов. Бензол как представитель аренов. Развитие представлений о строении бензола. Современные представления об электронном и пространственном строении бензола. Образование ароматической π-системы. Гомологи бензола, их номенклатура, общая формула. Номенклатура для дизамещенных производных бензола: *орто-, мета-, пара-*расположение заместителей. Физические свойства аренов.

Химические свойства аренов. Примеры реакций электрофильного замещения: галогенирования, алкилирования (катализаторы Фриделя — Крафтса), нитрования, сульфирования. Реакции гидрирования и присоединения хлора к бензолу. *Особенности химических свойств гомологов бензола * Взаимное влияние атомов на примере гомологов аренов. Ориентация в реакциях электрофильного замещения. Ориентанты I и II рода.

Применение и получение аренов. Природные источники ароматических углеводородов. Ароматизация алканов и циклоалканов. Алкилирование бензола.

Демонстрации

Шаростержневые и объемные модели молекул бензола и его гомологов.

Отношение бензола к бромной воде, раствору перманганата калия.

1.6. Природные источники углеводородов

Нефть. Нахождение в природе, состав и физические свойства нефти.

Топливноэнергетическое значение нефти. Промышленная переработка нефти. Ректификация нефти, основные фракции ее разделения, их использование. Вторичная переработка нефтепродуктов. *Ректификация мазута при уменьшенном давлении.* Крекинг нефтепродуктов. Различные виды крекинга, работы В.Г.Шухова. Изомеризация алканов. Алкилирование непредельных углеводородов. Риформинг нефтепродуктов. Качество автомобильного топлива. Октановое число.

Природный и попутный нефтяной газы. Сравнение состава природного и попутного газов, их практическое использование.

Каменный уголь. Основные направления использования каменного угля. Коксование каменного угля, важнейшие продукты этого процесса: кокс, каменноугольная смола, надсмольная вода. Соединения, выделяемые из каменноугольной смолы. Продукты, получаемые из надсмольной воды.

Экологические аспекты добычи, переработки и использования горючих ископаемых.

Демонстрации

Коллекция «Природные источники углеводородов».

Сравнение процессов горения нефти и природного газа.

Образование нефтяной пленки на поверхности воды.

Каталитический крекинг парафина (или керосина).

Растворимость различных нефтепродуктов (бензина, керосина, дизельного топлива, вазелина, парафина) друг в друге.

1.7. Гидроксильные соединения

Строение и классификация спиртов. Классификация спиртов по типу углеводородного радикала, числу гидроксильных групп и типу атома углерода, связанного с гидроксильной группой. Электронное и пространственное строение гидроксильной группы. Влияние строения спиртов на их физические свойства. Межмолекулярная водородная связь. Гомологический ряд предельных одноатомных спиртов. Изомерия и номенклатура алканолов, их общая формула.

Химические свойства алканолов. Реакционная способность предельных одноатомных спиртов. Сравнение кислотно-основных свойств органических и неорганических соединений, содержащих ОН-группу: кислот, оснований, амфотерных соединений (воды, спиртов). Реакции, подтверждающие кислотные свойства спиртов. Реакции замещения гидроксильной группы. Межмолекулярная дегидратация спиртов, условия образования простых эфиров. Сложные эфиры неорганических и органических кислот, реакции этерификации. Окисление и окислительное дегидрирование спиртов.

Способы получения спиртов. Гидролиз галогеналканов. Гидратация алкенов, условия ее проведения. Восстановление карбонильных соединений.

Отдельные представители алканолов. Метанол, его промышленное получение и применение в промышленности. Биологическое действие метанола. Специфические способы получения этилового спирта. Физиологическое действие этанола.

Многоатомные спирты. Изомерия и номенклатура представителей двух- и трехатомных спиртов. Особенности химических свойств многоатомных спиртов, их качественное обнаружение. Отдельные представители: этиленгликоль, глицерин, способы их получения, практическое применение.

Фенол. Электронное и пространственное строение фенола. Взаимное влияние ароматического кольца и гидроксильной группы. Химические свойства фенола как функция его химического строения. Бромирование фенола (качественная реакция), нитрование (пикриновая кислота, ее свойства и применение). Образование окрашенных комплексов с ионом Fe³⁺. Применение фенола. Получение фенола в промышленности.

Демонстрации

Модели молекул спиртов и фенолов.

Растворимость в воде алканолов, этиленгликоля, глицерина, фенола.

Реакция фенола с формальдегидом.

Качественные реакции на фенол.

Зависимости растворимости фенола в воде от температуры.

Взаимодействие фенола с раствором щелочи.

Распознавание водных растворов фенола и глицерина.

Практическая работа №5: « Изучение свойств спиртов (растворимость в воде, окисление), получение диэтилового эфира, глицерата меди»

1.8. Альдегиды и кетоны

Гомологические ряды альдегидов и кетонов. Понятие о карбонильных соединениях. Электронное строение карбонильной группы. Изомерия и номенклатура альдегидов и кетонов. Физические свойства карбонильных соединений.

Химические свойства альдегидов и кетонов. Реакционная способность карбонильных соединений. Реакции окисления альдегидов, качественные реакции на альдегидную группу. Реакции поликонденсации: образование фенолоформальдегидных смол.

Применение и получение карбонильных соединений. Применение альдегидов и кетонов в быту и промышленности. Альдегиды и кетоны в природе (эфирные масла, феромоны). Получение карбонильных соединений окислением спиртов, гидратацией алкинов, окислением углеводородов. Отдельные представители альдегидов и кетонов, специфические способы их получения и свойства.

Демонстрации

Шаростержневые и объемные модели молекул альдегидов и кетонов.

Получение уксусного альдегида, окисление этанола хромовой смесью.

Качественные реакции на альдегидную группу.

Практическая работа№6: «Изучение восстановительных свойств альдегидов: реакция «серебряного зеркала», восстановление гидроксида меди (II)».

1.9. Карбоновые кислоты и их производные

Гомологический ряд предельных одноосновных карбоновых кислот. Понятие о карбоновых кислотах и их классификация. Электронное и пространственное строение карбоксильной группы. Гомологический ряд предельных одноосновных карбоновых кислот, их номенклатура и изомерия. Межмолекулярные водородные связи карбоксильных групп, их влияние на физические свойства карбоновых кислот.

Химические свойства карбоновых кислот. Реакции, иллюстрирующие кислотные свойства и их сравнение со свойствами неорганических кислот. Образование функциональных производных карбоновых кислот. Реакции этерификации. Ангидриды карбоновых кислот, их получение и применение.

Способы получения карбоновых кислот. Отдельные представители и их значение. Общие способы получения: окисление алканов, алкенов, первичных спиртов, альдегидов. Важнейшие представители карбоновых кислот, их биологическая роль, специфические способы получения, свойства и применение муравьиной, уксусной, пальмитиновой и стеариновой; акриловой и метакриловой; олеиновой, линолевой и линоленовой; щавелевой; бензойной кислот.

Сложные эфиры. Строение и номенклатура сложных эфиров, межклассовая изомерия с карбоновыми кислотами. Способы получения сложных эфиров. Обратимость реакции этерификации и факторы, влияющие на смещение равновесия. *Образование сложных полиэфиров. Полиэтилентерефталат. Лавсан как представитель синтетических волокон.* Химические свойства и применение сложных эфиров.

Жиры. Жиры как сложные эфиры глицерина. Карбоновые кислоты, входящие в состав жиров. Зависимость консистенции жиров от их состава. Химические свойства жиров: гидролиз, омыление, гидрирование. Биологическая роль жиров, их использование в быту и промышленности.

Соли карбоновых кислот. Мыла. Способы получения солей: взаимодействие карбоновых кислот с металлами, основными оксидами, основаниями, солями; щелочной гидролиз сложных эфиров. Химические свойства солей карбоновых кислот: гидролиз,реакции ионного обмена. Мыла, сущность моющего действия. Отношение мыла к жесткой воде.

Синтетические моющие средства — СМС (детергенты), их преимущества и недостатки.

Демонстрации

Знакомство с физическими свойствами важнейших карбоновых кислот.

Отношение различных карбоновых кислот к воде.

Сравнение рН водных растворов уксусной и соляной кислот одинаковой молярности.

Получение приятно пахнущего сложного эфира.

Отношение сливочного, подсолнечного, машинного масел и маргарина к бромной воде и раствору перманганата калия.

Практическая работа №7: «Взаимодействие уксусной кислоты с металлами. Получение эфира уксусной кислоты».

Практическая работа №8: «Получение сложных эфиров. Омыление жира»

1.10. Углеводы

Понятие об углеводах. Классификация углеводов. Моно-, ди- и полисахариды, представители каждой группы углеводов. Биологическая роль углеводов, их значение в жизни человека и общества.

Моносахариды. Строение и оптическая изомерия моносахаридов. Их классификация по числу атомов углерода и природе карбонильной группы. Формулы Фишера и Хеуорса для изображения молекул моносахаридов. Отнесение моносахаридов к D- и L-ряду. Важнейшие представители моноз. Глюкоза, строение ее молекулы и физические свойства. Таутомерия. Химические свойства глюкозы: реакции по альдегидной группе («серебряного зеркала», окисление азотной кислотой, гидрирование). Реакции глюкозы как многоатомного спирта: взаимодействие глюкозы с гидроксидом меди (II) при комнатной температуре и нагревании. Различные типы брожения (спиртовое, молочнокислое). Глюкоза в природе. Биологическая роль и применение глюкозы. Фруктоза как изомер глюкозы. Сравнение строения молекулы и химических свойств глюкозы и фруктозы. Фруктоза в природе и ее биологическая роль. Пентозы. Рибоза и дезоксирибоза как представители альдопентоз. Строение молекул. Дисахариды. Строение дисахаридов. Способ сочленения циклов. Восстанавливающие и невосстанавливающие свойства дисахаридов как следствие сочленения цикла. Строение и химические свойства сахарозы. *Технологические основы производства сахарозы.* Лактоза и мальтоза как изомеры сахарозы.

Полисахариды. Общее строение полисахаридов. Строение молекулы крахмала, амилоза и амилопектин. Физические свойства крахмала, его нахождение в природе и биологическая роль. Гликоген. Химические свойства крахмала. Строение элементарного звена целлюлозы. Влияние строения полимерной цепи на физические и химические свойства целлюлозы. Гидролиз целлюлозы, образование сложных эфиров с неорганическими и органическими кислотами. Понятие об искусственных волокнах: ацетатном шелке, вискозе. Нахождение в природе и биологическая роль целлюлозы. Сравнение свойств крахмала и целлюлозы.

Демонстрации

Образцы углеводов и изделий из них.

Взаимодействие глюкозы с фуксинсернистой кислотой.

Отношение растворов сахарозы и мальтозы к Cu(OH)2 при нагревании.

Ознакомление с физическими свойствами крахмала и целлюлозы.

Набухание целлюлозы и крахмала в воде.

Коллекция волокон.

Практическая работа №9: «Химические свойства углеводов (реакция «серебряного зеркала» глюкозы, взаимодействие с гидроксидом меди (II), действие аммиачного раствора оксида серебра на сахарозу, иода на крахмал)».

1.11. Амины, аминокислоты, белки

Классификация и изомерия аминов. Понятие об аминах. Первичные, вторичные и третичные амины. Классификация аминов по типу углеводородного радикала и числу аминогрупп в молекуле. Гомологические ряды предельных алифатических и ароматических аминов, изомерия и номенклатура.

Химические свойства аминов. Амины как органические основания, их сравнение с аммиаком и другими неорганическими основаниями. Сравнение химических свойств алифатических и ароматических аминов. Образование амидов. Анилиновые красители. *Понятие о синтетических волокнах. Полиамиды и полиамидные синтетические волокна.*

Применение и получение аминов. Получение аминов. Работы Н. Н. Зинина.

Аминокислоты. Понятие об аминокислотах, их классификация и строение. Оптическая изомерия α-аминокислот. Номенклатура аминокислот. Двойственность кислотно-основных свойств аминокислот и ее причины. Биполярные ионы. Реакции конденсации. Пептидная связь. *Синтетические волокна: капрон, энант.*

Классификация волокон. Получение аминокислот, их применение и биологическая функция.

Белки. Белки как природные полимеры. Первичная, вторичная, третичная и четвертичная структуры белков. Фибриллярные и глобулярные белки. Химические свойства белков: горение, денатурация, гидролиз, качественные (цветные) реакции. Биологические функции белков, их значение. Белки как компонент пищи. Проблема белкового голодания и пути ее решения.

Демонстрации

Взаимодействие анилина и метиламина с водой и кислотами.

Окрашивание тканей анилиновыми красителями.

Обнаружение функциональных групп в молекулах аминокислот.

Нейтрализация щелочи аминокислотой.

Нейтрализация кислоты аминокислотой.

Растворение и осаждение белков.

Практическая работа №10: « Образование солей анилина. Бромирование анилина». **Практическая работа № 11** «Денатурация белка. Цветные реакции белков».

1.12. Азотсодержащие гетероциклические соединения. Нуклеиновые кислоты.

Нуклеиновые кислоты. Нуклеиновые кислоты как природные полимеры. Нуклеотиды, их строение, примеры. АТФ и АДФ, их взаимопревращение и роль этого процесса в природе. Понятие ДНК и РНК. Строение ДНК, ее первичная и вторичная структура. Работы Ф.Крика и Д.Уотсона. Комплементарность азотистых оснований. Репликация ДНК. Особенности строения РНК. Типы РНК и их биологические функции. Понятие о троичном коде (кодоне). Биосинтез белка в живой клетке. Генная инженерия и биотехнология. Трансгенные формы растений и животных.

Демонстрации

Модели молекул важнейших гетероциклов.

Коллекция гетероциклических соединений.

Модель молекулы ДНК, демонстрация принципа комплементарности азотистых оснований. Образцы продуктов питания из трансгенных форм растений и животных.

Лекарства и препараты, изготовленные методами генной инженерии и биотехнологии.

1.13. Биологически активные соединения

Ферменты. Понятие о ферментах как о биологических катализаторах белковой природы.

Особенности строения и свойств в сравнении с неорганическими катализаторами.

Классификация ферментов. Особенности строения и свойств ферментов: селективность и эффективность. Зависимость активности ферментов от температуры и рН среды. Значение ферментов в биологии и применение в промышленности.

Витамины. Понятие о витаминах. Их классификация и обозначение. Норма потребления витаминов. Водорастворимые (на примере витаминов C, группы B и P) и жирорастворимые

(на примере витаминов A, D и E). Авитаминозы, гипервитаминозы и гиповитаминозы, их профилактика.

Гормоны. Понятие о гормонах как биологически активных веществах, выполняющих эндокринную регуляцию жизнедеятельности организмов. Классификация гормонов: стероиды, производные аминокислот, полипептидные и белковые гормоны. Отдельные представители: эстрадиол, тестостерон, инсулин, адреналин.

Лекарства. Понятие о лекарствах как химиотерапевтических препаратах. Краткие исторические сведения о возникновении и развитии химиотерапии. Группы лекарств: сульфамиды (стрептоцид), антибиотики (пенициллин), антипиретики (аспирин), анальгетики (анальгин). Механизм действия некоторых лекарственных препаратов, строение молекул, прогнозирование свойств на основе анализа химического строения. Антибиотики, их классификация по строению, типу и спектру действия. Безопасные способы применения, лекарственные формы.

Демонстрации

Сравнение скорости разложения H_2O_2 под действием фермента каталазы и неорганических катализаторов: KI, FeCl₃, MnO₂.

Образцы витаминных препаратов.

Поливитамины.

Слайды фотографий животных с различными формами авитаминозов.

Слайды с изображением структурных формул эстрадиола, тестостерона, адреналина.

Взаимодействие адреналина с раствором FeCl₃.

Слайды с формулами амида сульфаниловой кислоты, дигидрофолиевой и гидрофолиевой кислот, бензилпенициллина, тетрациклина, аспирина.

Практическая работа № 12: «Обнаружение витамина А в подсолнечном масле. Обнаружение витамина С в яблочном соке».

2. ОБЩАЯ И НЕОРГАНИЧЕСКАЯ ХИМИЯ

2.1. Химия – наука о веществах

Состав вещества. Химические элементы. Способы существования химических элементов: атомы, простые и сложные вещества. Вещества постоянного и переменного состава. Закон постоянства состава веществ. Вещества молекулярного и немолекулярного строения.

Измерение вещества. Масса атомов и молекул. Атомная единица массы. Относительные атомная и молекулярная массы. Количество вещества и единицы его измерения: моль, ммоль, кмоль. Число Авогадро. Молярная масса.

***Агрегатные состояния вещества:** твердое (кристаллическое и аморфное), жидкое и газообразное. *

Закон Авогадро и его следствия. Молярный объем веществ в газообразном состоянии. Объединенный газовый закон и уравнение Менделеева-Клапейрона.

Смеси веществ. Различия между смесями и химическими соединениями. Массовая и объемная доли компонентов смеси.

Изучение методов очистки вещества (перекристаллизация, фильтрование»

Демонстрации

Опыты, иллюстрирующие закон сохранения массы. Некоторые вещества в количестве 1 моль.

Набор моделей атомов и молекул. Модель молярного объема газов.

Практическая работа №13: «Решение расчетных задач по определению состава и количества вещества».

2.2. Строение атома

Атом - сложная частица. Доказательства сложности строения атома: катодные и рентгеновские лучи, фотоэффект, радиоактивность, электролиз. Планетарная модель атома Э.Резерфорда. Строение атома по Н.Бору. Современные представления о строении атома. Корпускулярно-волновой дуализм частиц микромира.

Состав атомного ядра – нуклоны: протоны и нейтроны. Изотопы и нуклиды. Устойчивость ядер.

Электронная оболочка атомов. Понятие об электронной орбитали и электронном облаке. Квантовые числа: главное, орбитальное (побочное), магнитное и спиновое. Распределение электронов по энергетическим уровням, подуровням и орбиталям в соответствии с принципом наименьшей энергии, принципом Паули и правилом Гунда. Электронные конфигурации атомов химических элементов.

Валентные возможности атомов химических элементов.

Электронная классификация химических элементов: s-, p-, d-, f-элементы.

Практическая работа №14: «Составление электронных и графических формул атомов, определение степеней окисления».

2.3. Периодический закон и Периодическая система химических элементов Д.И. Менделеева

Открытие Периодического закона. Предпосылки: накопление фактологического материала, работы предшественников (И.В. Деберейнера, А.Э. Шанкуртуа, Дж.А. Ньюлендса, Л.Ю. Мейера), съезд химиков в Карлсруэ, личностные качества Д.И. Менделеева. Открытие Д.И. Менделеевым Периодического закона.

Периодический закон и строение атома. Изотопы. Современное понятие химического элемента. Современная формулировка Периодического закона. Периодическая система и строение атома. Физический смысл порядкового номера элементов, номеров группы и периода. Периодическое изменение свойств элементов: радиуса атома; энергии ионизации; электроотрицательности. Причины изменения металлических и неметаллических свойств элементов в группах и периодах, в том числе больших и сверхбольших. Значение Периодического закона и Периодической системы химических элементов Д.И. Менделеева для развития науки и понимания химической картины мира.

Демонстрации. Различные варианты таблицы Периодической системы химических элементов Д.И. Менделеева.

2.4. Строение вещества

Понятие о химической связи. Типы химических связей: ковалентная, ионная, металлическая и водородная.

Ковалентная химическая связь. Два механизма образования этой связи: обменный и донорно-акцепторный. Основные параметры этого типа связи: длина, прочность, угол связи или валентный угол. Основные свойства ковалентной связи: насыщенность, поляризуемость и прочность. Электроотрицательность и классификация ковалентных связей по этому признаку: полярная и неполярная ковалентные связи. Полярность связи и полярность

молекулы. Кратность ковалентных связей и классификация их по этому признаку: одинарные, двойные, тройные, полуторные.

Типы кристаллических решеток у веществ с этим типом связи: атомные и молекулярные. Физические свойства веществ с этими кристаллическими решетками.

Ионная химическая связь, как крайний случай ковалентной полярной связи Механизм образования ионной связи. Ионные кристаллические решетки и свойства веществ с такими кристаллами.

Металлическая химическая связь, как особый тип химической связи, существующий в металлах и сплавах. Ее отличия и сходство с ковалентной и ионной связями. Свойства металлической связи. Металлические кристаллические решетки и свойства веществ с такими кристаллами.

Водородная химическая связь. Механизм образования такой связи. Ее классификация: межмолекулярная и внутримолекулярная водородные связи. Молекулярные кристаллические решетки для этого типа связи. Физические свойства веществ с водородной связью. Биологическая роль водородных связей в организации структур биополимеров.

***Комплексообразование.** Понятие о комплексных соединениях. Координационное число комплексообразователя. Внутренняя и внешняя сфера комплексов. Номенклатура комплексных соединений. Их значение.*

Демонстрации. Модели молекул различной архитектуры. Модели кристаллических решеток различного типа.

Практическая работа №15: « Качественные реакции на ионы Fe²⁺ и Fe³⁺».

2.5. Полимеры

Неорганические полимеры. Полимеры – простые вещества с атомной кристаллической решеткой: аллотропные видоизменения углерода (алмаз, графит, карбин, фуллерен – взаимосвязь гибридизации орбиталей у атомов углерода с пространственным строением аллотропных модификаций); селен и теллур цепочечного строения. Полимеры – сложные вещества с атомной кристаллической решеткой: кварц, кремнезем (диоксидные соединения кремния), корунд (оксид алюминия) и алюмосиликаты (полевые шпаты, слюда, каолин).

Минералы и горные породы. Сера пластическая. Минеральное волокно — асбест. Значение неорганических природных полимеров в формировании одной из геологических оболочек Земли — литосферы.

Органические полимеры. Способы их получения: реакции полимеризации и реакции поликонденсации. Структуры полимеров: линейные, разветвленные и пространственные. Структурирование полимеров: вулканизация каучуков, дубление белков, отверждение поликонденсационных полимеров.

Классификация полимеров по различным признакам.

Демонстрации. Коллекции пластмасс, каучуков, волокон, минералов и горных пород. Минеральное волокно – асбест и изделия из него. Модели молекул белков, ДНК, РНК.

Практическая работа №16: «Решение экспериментальных задач на идентификацию пластмасс, волокон (растворимость, электропроводимость, горючесть, отношение к растворам кислот, щелочей и окислителей)».

2.6. Дисперсные системы

Понятие о дисперсных системах. Классификация дисперсных систем в зависимости от агрегатного состояния дисперсионной среды и дисперсной фазы, а также по размеру их частиц. Грубодисперсные системы: эмульсии и суспензии. Тонкодисперсные системы: коллоидные (золи и гели) и истинные (молекулярные, молекулярно-ионные и ионные). Эффект Тиндаля. Коагуляция в коллоидных растворах. Синерезис в гелях.

Значение дисперсных систем в живой и неживой природе и практической жизни человека. Эмульсии и суспензии в строительстве, пищевой и медицинской промышленности, косметике.

Биологические, медицинские и технологические золи. Значение гелей в организации живой материи. Биологические, пищевые, медицинские, косметические гели. Синерезис как фактор, определяющий срок годности продукции на основе гелей. Свертывание крови как биологический синерезис, его значение.

Демонстрации. Виды дисперсных систем и их характерные признаки. Прохождение луча света через коллоидные и истинные растворы (эффект Тиндаля).

2.7. Химические реакции

Классификация химических реакций в органической и неорганической химии. Понятие о химической реакции. Реакции, идущие с изменением состава веществ: по числу и характеру реагирующих и образующихся веществ (разложения, соединения, замещения, обмена); по изменению степеней окисления элементов (окислительно-восстановительные и не окислительно-восстановительные реакции); по тепловому эффекту (экзо- и эндотермические); по фазе (гомо- и гетерогенные); по направлению (обратимые и необратимые); по использованию катализатора (каталитические и некаталитические); по механизму (радикальные, молекулярные и ионные).

Вероятность протекания химических реакций. Внутренняя энергия, энтальпия. Тепловой эффект химических реакций. Термохимические уравнения. Стандартная энтальпия реакций и образования веществ. Закон Г. И. Гесса и его следствия. Энтропия. Тепловой эффект химических реакций. Термохимические уравнения.

Скорость химических реакций. Понятие о скорости реакций. Скорость гомо- и гетерогенной реакции. Энергия активации.

Факторы, влияющие на скорость химической реакции. Природа реагирующих веществ. Температура (закон Вант-Гоффа). Концентрация. Катализаторы и катализ: гомо- и гетерогенный, их механизмы. Ферменты, их сравнение с неорганическими катализаторами. Зависимость скорости реакций от поверхности соприкосновения реагирующих веществ.

Обратимость химических реакций. Химическое равновесие. Понятие о химическом равновесии. Равновесные концентрации. Динамичность химического равновесия. Факторы, влияющие на смещение равновесия: концентрация, давление, температура (принцип Ле Шателье).

Демонстрации. Реакции, идущие с образованием осадка, газа и воды; свойства металлов, окисление альдегида в кислоту и спирта в альдегид. Реакции горения, замещения, соединения, обмена; реакции эндотермические на примере реакции разложения. Взаимодействие цинка с растворами соляной и серной кислот при разных температурах, разных концентрациях соляной кислоты; разложение пероксида кислорода с помощью оксида марганца (IV), каталазы сырого мяса и сырого картофеля. Зависимость степени электролитической диссоциации уксусной кислоты от разбавления.

Практическая работа №17: «Реакции, идущие с образованием осадка, газа и воды»

2.8. Растворы

Понятие о растворах. Физико-химическая природа растворения и растворов. Взаимодействие растворителя и растворенного вещества. Растворимость веществ. Способы выражения концентрации растворов: массовая доля растворенного вещества (процентная), молярная.

Теория электролитической диссоциации. Механизм диссоциации веществ с различными типами химических связей.

Вклад русских ученых в развитие представлений об электролитической диссоциации. Основные положения теории электролитической диссоциации.

Степень электролитической диссоциации и факторы ее зависимости. Сильные и средние электролиты. Диссоциация воды. Водородный показатель. Среда водных растворов электролитов. Реакции обмена в водных растворах электролитов.

Гидролиз как обменный процесс. Необратимый гидролиз органических и неорганических соединений и его значение в практической деятельности человека.

Обратимый гидролиз солей. Ступенчатый гидролиз. Практическое применение гидролиза.

Гидролиз органических веществ (белков, жиров, углеводов, полинуклеотидов, ATФ) и его биологическое и практическое значение. Омыление жиров. Реакция этерификации.

Демонстрации

Сравнение электропроводности растворов электролитов. Смещение равновесия диссоциации слабых кислот. Индикаторы и изменение их окраски в разных средах. Гидролиз карбонатов, сульфатов и силикатов щелочных металлов; нитратов свинца (II) или цинка, хлорида аммония.

Практическая работа №18: «Приготовление растворов различных видов концентрации». **Практическая работа №19:** «Гидролиз солей различного типа».

2.9. Окислительно-восстановительные реакции. Электрохимические процессы

Окислительно-восстановительные реакции. Степень окисления. Восстановители и окислители. Окисление и восстановление. Важнейшие окислители и восстановители. Восстановительные свойства металлов — простых веществ. Окислительные и восстановительные свойства неметаллов — простых веществ. Восстановительные свойства веществ, образованных элементами в низшей (отрицательной) степени окисления. Окислительные свойства веществ, образованных элементами в высшей (положительной) степени окисления. Окислительные и восстановительные свойства веществ, образованных элементами в промежуточных степенях окисления.

Методы составления уравнений окислительно-восстановительных реакций. Метод электронного баланса. Влияние среды на протекание окислительно-восстановительных процессов.

Химические источники тока. Электродные потенциалы.

Ряд стандартных электродных потенциалов (электрохимический ряд напряжений металлов).

Гальванические элементы и принципы их работы.

Электролиз расплавов и водных растворов электролитов. Процессы, происходящие на катоде и аноде. Уравнения электрохимических процессов. Электролиз водных растворов с инертными электродами. Электролиз водных растворов с растворимыми электродами. Практическое применение электролиза.

Демонстрации. Восстановление дихромата калия этиловым спиртом. Окислительные свойства азотной кислоты. Окислительные свойства дихромата калия. Взаимодействие азотной кислот с медью. Окислительные свойства перманганата калия в различных средах.

Практическая работа №20: «Составление уравнений окислительно-восстановительных реакций».

2.10. Классификация веществ. Простые вещества

Классификация неорганических веществ. Простые и сложные вещества. Оксиды, их классификация. Гидроксиды (основания, кислородсодержащие кислоты, амфотерные гидроксиды). Кислоты, их классификация. Основания, их классификация. Соли средние, кислые, основные и комплексные.

Металлы. Положение металлов в Периодической системе и особенности строения их атомов. Простые вещества – металлы: строение кристаллов и металлическая химическая

связь. Общие физические свойства металлов и их восстановительные свойства: взаимодействие с неметаллами (кислородом, галогенами, серой, азотом, водородом), водой, кислотами, растворами солей, органическими веществами (спиртами, галогеналканами, фенолом, кислотами), со щелочами. Оксиды и гидроксиды металлов. Зависимость свойств этих соединений от степеней окисления металлов. Значение металлов в природе и жизни организмов.

Коррозия металлов. Понятие коррозии. Химическая коррозия. Электрохимическая коррозия. Способы защиты металлов от коррозии.

***Общие способы получения металлов.** Металлы в природе. Металлургия и ее виды: пиро-, гидро- и электрометаллургия. Электролиз расплавов и растворов соединений металлов и его практическое значение.*

Неметаллы. Положение неметаллов в периодической системе, особенности строения их атомов. Электроотрицательность.

Благородные газы. Электронное строение атомов благородных газов и особенности их химических и физических свойств.

Неметаллы — простые вещества. Атомное и молекулярное их строение. Аллотропия. Химические свойства неметаллов. Окислительные свойства: взаимодействие с металлами, водородом, менее электроотрицательными неметаллами, некоторыми сложными веществами. Восстановительные свойства неметаллов в реакциях с фтором, кислородом, сложными веществами-окислителями (азотной и серной кислотами и др.).

Демонстрации. Образцы представителей классов веществ. Модели кристаллических решеток металлов. Коллекция металлов с разными физическими свойствами. Взаимодействие лития, натрия, магния и железа с кислородом; щелочных металлов с водой, спиртами, фенолом; цинка с растворами соляной и серной кислот; железа с раствором медного купороса. Защита металлов от коррозии: образцы «нержавеек», защитных покрытий. Модели кристаллических решеток иода, алмаза, графита.

Практическая работа №21: «Взаимодействие солей с металлами»

2.11. Основные классы неорганических и органических соединений

Водородные соединения неметаллов. Получение аммиака и хлороводорода . Физические свойства. Отношение к воде: кислотно-основные свойства.

Оксиды и ангидриды карбоновых кислот. Несолеобразующие и солеобразующие оксиды. Кислотные оксиды, их свойства. Основные оксиды, их свойства. Амфотерные оксиды, их свойства. Зависимость свойств оксидов металлов от степени окисления.

Кислоты органические и неорганические. Кислоты в свете теории электролитической диссоциации. Кислоты в свете протолитической теории. Классификация органических и неорганических кислот. Общие свойства кислот: взаимодействие органических и неорганических кислот с металлами, основными и амфотерными оксидами и гидроксидами, с солями, образование сложных эфиров. Особенности свойств концентрированной серной и азотной кислот.

Основания органические и неорганические. Основания в свете теории электролитической диссоциации. Основания в свете протолитической теории. Классификация органических и неорганических оснований. Химические свойства щелочей и нерастворимых оснований. Свойства бескислородных оснований: аммиака и аминов.

Амфотерные органические и неорганические соединения. Амфотерные основания в свете протолитической теории. Амфотерность оксидов и гидроксидов переходных металлов: взаимодействие с кислотами и шелочами.

Соли. Классификация и химические свойства солей. Особенности свойств солей органических и неорганических кислот.

Генетическая связь между классами органических и неорганических соединений. Понятие о генетической связи и генетических рядах в неорганической и органической химии. Генетические ряды и генетическая связь в органической химии. Единство мира вешеств.

Демонстрации

Коллекции кислотных, основных и амфотерных оксидов, демонстрация их свойств. Взаимодействие концентрированных азотной и серной кислот, а также разбавленной азотной кислоты с медью. Взаимодействие раствора гидроксида натрия с кислотными оксидами, амфотерными гидроксидами (гидроксидом цинка). Взаимодействие аммиака с хлороводородом и водой.

* Осуществление переходов:

$$\begin{split} \text{Ca} &\to \text{CaO} \to \text{Ca}_3(\text{PO}_4)_2 \to \text{Ca}(\text{OH})_2 \\ \text{P} &\to \text{P}_2\text{O}_5 \to \text{H}_3\text{PO}_4 \\ \text{Cu} &\to \text{CuO} \to \text{CuSO}_4 \to \text{Cu}(\text{OH})_2 \to \text{CuO} \to \text{Cu} \\ \text{C}_2\text{H}_5\text{OH} \to \text{C}_2\text{H}_4 \to \text{C}_2\text{H}_4\text{Br}_2 \end{split}$$

Практическая работа №22: «Получение аммиака, CO₂, их свойства».

2.12. Химия элементов

s-Элементы.

Водород. Двойственное положение водорода в Периодической системе. Изотопы водорода. Тяжелая вода. Окислительные и восстановительные свойства водорода, его получение и применение. Роль водорода в живой и неживой природе.

***Вода.** Роль воды как средообразующего вещества клетки. Экологические аспекты водопользования.*

Элементы ІА-группы. Щелочные металлы. Общая характеристика щелочных металлов на основании положения в Периодической системе элементов Д.И. Менделеева и строения атомов. Получение, физические и химические свойства щелочных металлов. Катионы щелочных металлов как важнейшая химическая форма их существования, регулятивная роль катионов калия и натрия в живой клетке. Природные соединения натрия и калия, их значение.

Элементы **IIA-группы.** Общая характеристика щелочноземельных металлов и магния на основании положения в Периодической системе элементов Д.И. Менделеева и строения атомов. Кальций, его получение, физические и химические свойства. Важнейшие соединения кальция, их значение и применение. Кальций в природе, его биологическая роль.

р-Элементы.

Алюминий. Характеристика алюминия на основании положения в Периодической системе элементов Д.И.Менделеева и строения атома. Получение, физические и химические свойства алюминия. Важнейшие соединения алюминия, их свойства, значение и применение. Природные соединения алюминия.

Элементы IVA-группы. Углерод и кремний. Общая характеристика на основании их положения в Периодической системе Д.И. Менделеева и строения атома. Простые вещества, образованные этими элементами. Углерод и его аллотропия. Свойства аллотропных модификаций углерода, их значение и применение. Оксиды и гидроксиды углерода и кремния, их химические свойства. Соли угольной и кремниевых кислот, их значение и применение.

* Силикатная промышленность Природообразующая роль углерода для живой и кремния – для неживой природы.*

*Галогены. Общая характеристика галогенов на основании их положения в Периодической системе элементов Д.И.Менделеева и строения атомов. Галогены – простые вещества: строение молекул, химические свойства, получение и применение. Важнейшие

соединения галогенов, их свойства, значение и применение. Галогены в природе. Биологическая роль галогенов.*

Халькогены. Общая характеристика халькогенов на основании их положения в Периодической системе элементов Д.И. Менделеева и строения атомов. Халькогены – простые вещества. Аллотропия. Строение молекул аллотропных модификаций и их свойства. Получение и применение кислорода и серы. Халькогены в природе, их биологическая роль.

Элементы VA-группы. Общая характеристика элементов этой группы на основании их положения в Периодической системе элементов Д.И. Менделеева и строения атомов. Строение молекулы азота и аллотропных модификаций фосфора, их физические и химические свойства. Водородные соединения элементов VA-группы. Оксиды азота и фосфора, соответствующие им кислоты. Соли этих кислот. Свойства кислородных соединений азота и фосфора, их значение и применение. Азот и фосфор в природе, их биологическая роль.

d-Элементы.

Особенности строения атомов d-элементов. Медь, цинк, хром, железо, марганец как простые вещества, их физические и химические свойства. Нахождение этих металлов в природе, их получение и значение. Соединения d-элементов с различными степенями окисления. Характер оксидов и гидроксидов этих элементов в зависимости от степени окисления металла.

Демонстрации. Коллекции простых веществ, образованных элементами различных электронных семейств. Коллекции минералов и горных пород. Химические свойства водорода, кислорода, серы, фосфора, галогенов, углерода и других веществ.

Практическая работа №23: «Взаимодействие алюминия с растворами кислот и щелочей. Окрашивание пламени катионами щелочных и щелочноземельных металлов».

Практическая работа №24: «Получение гидроксида алюминия и исследование свойств». **Практическая работа №25:** «Свойства карбонатов и гидрокарбонатов»

2.13. Химия в жизни общества

Химия и производство. Химическая промышленность и химические технологии. Сырье для химической промышленности. Вода в химической промышленности. Энергия для химического производства. Научные принципы химического производства. Защита окружающей среды и охрана труда при химическом производстве. Основные стадии химического производства. Сравнение производства аммиака и метанола.

Химия в сельском хозяйстве. Химизация сельского хозяйства и ее направления. Растения и почва, почвенный поглощающий комплекс. Химизация животноводства *Удобрения и их классификация. Химические средства защиты растений. Отрицательные последствия применения пестицидов и борьба с ними. *

Химия и экология. Химическое загрязнение окружающей среды. Охрана гидросферы от химического загрязнения. Охрана почвы от химического загрязнения. Охрана атмосферы от химического загрязнения. Охрана флоры и фауны от химического загрязнения. Биотехнология и генная инженерия.

Химия и повседневная жизнь человека. Домашняя аптека. Моющие и чистящие средства. Средства борьбы с бытовыми насекомыми. Средства личной гигиены и косметики. Химия и пища. Маркировки упаковок пищевых и гигиенических продуктов и умение их читать. Экология жилища. Химия и генетика человека.

Демонстрации

Модели производства серной кислоты и аммиака.

Коллекция удобрений и пестицидов.

Образцы средств бытовой химии и лекарственных препаратов.

Практическая работа №26: «Определение органических веществ в лекарственных

темы рефератов (докладов), индивидуальных проектов

- Биотехнология и генная инженерия технологии XXI века.
- Нанотехнология как приоритетное направление развития науки и производства
- в Российской Федерации.
- Современные методы обеззараживания воды.
- Аллотропия металлов.
- Жизнь и деятельность Д.И.Менделеева.
- «Периодическому закону будущее не грозит разрушением...»
- Синтез 114-го элемента триумф российских физиков-ядерщиков.
- Изотопы водорода.
- Использование радиоактивных изотопов в технических целях.
- Рентгеновское излучение и его использование в технике и медицине.
- Плазма четвертое состояние вещества.
- Аморфные вещества в природе, технике, быту.
- Охрана окружающей среды от химического загрязнения. Количественные характеристики загрязнения окружающей среды.
- Применение твердого и газообразного оксида углерода (IV).
- Защита озонового экрана от химического загрязнения.
- Грубодисперсные системы, их классификация и использование в профессиональной деятельности.
- Косметические гели.
- Применение суспензий и эмульсий в строительстве.
- Минералы и горные породы как основа литосферы.
- Растворы вокруг нас. Типы растворов.
- Вода как реагент и среда для химического процесса.
- Жизнь и деятельность С.Аррениуса.
- Вклад отечественных ученых в развитие теории электролитической диссоциации.
- Устранение жесткости воды на промышленных предприятиях.
- Серная кислота «хлеб химической промышленности».
- Использование минеральных кислот на предприятиях различного профиля.
- Оксиды и соли как строительные материалы.
- История гипса.
- Поваренная соль как химическое сырье.
- Многоликий карбонат кальция: в природе, в промышленности, в быту.
- Реакции горения на производстве и в быту.
- Виртуальное моделирование химических процессов.
- Электролиз растворов электролитов.
- Электролиз расплавов электролитов.
- Практическое применение электролиза: рафинирование, гальванопластика, гальваностегия.
- История получения и производства алюминия.
- Электролитическое получение и рафинирование меди.
- Жизнь и деятельность Г. Дэви.
- Роль металлов в истории человеческой цивилизации. История отечественной черной металлургии. Современное металлургическое производство.
- История отечественной цветной металлургии. Роль металлов и сплавов в научнотехническом прогрессе.

- Коррозия металлов и способы защиты от коррозии.
- Инертные или благородные газы.
- Рождающие соли галогены.
- История шведской спички.
- История возникновения и развития органической химии.
- Жизнь и деятельность А. М. Бутлерова.
- Витализм и его крах.
- Роль отечественных ученых в становлении и развитии мировой органической химии.
- Современные представления о теории химического строения.
- Экологические аспекты использования углеводородного сырья.
- Экономические аспекты международного сотрудничества по использованию углеводородного сырья.
- История открытия и разработки газовых и нефтяных месторождений в Российской Федерации.
- Химия углеводородного сырья и моя будущая профессия.
- Углеводородное топливо, его виды и назначение.
- Синтетические каучуки: история, многообразие и перспективы.
- Резинотехническое производство и его роль в научно-техническом прогрессе.
- Сварочное производство и роль химии углеводородов в нем.
- Нефть и ее транспортировка как основа взаимовыгодного международного сотрудничества.

•

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

При реализации содержания общеобразовательной учебной дисциплины «Химия» в пределах освоения ОПОП СПО по специальности 19.02.05 Технология бродильных производств и виноделие максимальная учебная нагрузка обучающихся составляет — 289 час, в том числе аудиторная (обязательная) учебная нагрузка обучающихся, включая практические занятия, - 192 часа, внеаудиторная самостоятельная работа обучающихся - 82 часа, консультации — 15 часов.

Тематический план

Наименование разделов и тем	Всего часов	лекции, уроки	П.З.
1	2	3	4
Введение	2	2	-
1. Органическая химия	88	64	24
1.1. Предмет органической			
химии. Теория строения			
органических соединений.	8	8	-
1.2.Предельные углеводороды	10	6	4
1.3. Этиленовые и диеновые	8	6	2
углеводороды.			
1.4. Ацетиленовые	4	2	2
углеводороды.			
1.5. Ароматические	4	4	-
углеводороды			
1.6. Природные источники	2	2	-
углеводородов.			
1.7. Гидроксильные	8	6	2
соединения.			
1.8. Альдегиды и кетоны.	6	4	2
1.9. Карбоновые кислоты и их	12	8	4
производные.			
1.10.Углеводы.	8	6	2
1.11. Амины, аминокислоты,	10	6	4
белки.			
1.12. Азотосодержащие	2	2	-
гетероциклические соединения.			
1.13. Биологически активные	6	4	2
соединения.			
2.Общая и неорганическая	102	74	28
химия			
2.1. Химия – наука о веществах	6	4	2
2.2. Строение атома	6	4	2
2.3. Периодический закон и	4	4	-
Периодическая система			
химических элементов Д.И.			
Менделеева			
2.4. Строение вещества	8	6	2
2.5.Полимеры.	6	4	2
2.6. Дисперсные системы.	2	2	_
2.7.Химические реакции	8	6	2
2.8. Растворы.	14	10	4
2.9.Окислительно-восстан.	8	6	2
реакции. Электрохимические			_
процессы.			
2.10.Классификация веществ.	10	8	2
Простые вещества.			_
2.11.Основные классы	12	10	2
неорганических соединений.			

2.12. Химия элементов.	12	6	6
2.13.Химия в жизни общества.	4	2	2
Дифференцированный зачет	2	2	-
Итого	192	140	52
Консультации	15		
Внеаудиторная самостоятельная	82		
работа:			
подготовка выступлений по заданным темам, докладов, рефератов, эссе.	(62)		
Подготовка индивидуального проекта с использованием информационных технологий	(20)		
ВСЕГО	289		

Характеристика видов деятельности обучающихся

Содержание обучения	Характеристика основных видов деятельности студентов	
одержине обутения	(на уровне учебных действий)	
Важнейшие химические понятия	Умение давать определение и оперировать следующими химическими понятиями: вещество, химический элемент, атом, молекула, относительные атомная и молекулярная массы, ион, аллотропия, изотопы, химическая связь, электроотрицательность, валентность, степень окисления, моль, молярная масса, молярный объем газообразных веществ, вещества молекулярного и немолекулярного строения, растворы, электролит и неэлектролит, электролитическая диссоциация, окислитель и восстановитель, окисление и восстановление, тепловой эффект реакции, скорость химической реакции, катализ, химическое равновесие, углеродный скелет, функциональная группа,	
	изомерия, гомология	
Формулирование законов сохранения массы веществ и постоянства совеществ. Установка причинно-следственной связи между содержанием этих зак написанием химических формул и уравнений. Установка эволюционной сущности менделеевской и современной формулировок периодического закона Д. И. Менделеева. Объяснение физического смысла символики периодической таблицы химических элементов Д. И. Менделеева (номеров элемента, периода, группы) и установка причинно-следственной связи между строением атома и закономерностями изменения свойств элементов и образованных ими веществ в периодах и группах. Характеристика элементов малых и больших периодов по их положент Периодической системе Д. И. Менделеева		
Основные теории химии	Установка зависимости свойств химических веществ от строения атомов образующих их химических элементов. Характеристика важнейших типов химических связей и относительности этой типологии. Объяснение зависимости свойств веществ от их состава и строения кристаллических решеток. Формулировка основных положений теории электролитической диссоциации и характеристика в свете этой теории свойств основных классов неорганических соединений. Формулировка основных положений теории химического строения органических соединений и характеристика в свете этой теории свойств основных классов органических соединений	
Важнейшие вещества и материалы	Характеристика состава, строения, свойств, получения и применения важнейших металлов (IA и II А групп, алюминия, железа, а в естественнонаучном профиле и некоторых d-элементов) и их соединений. Характеристика состава, строения, свойств, получения и применения важнейших неметаллов (VIII A, VIIA, VIA групп, а также азота и фосфора,	

	углерода и кремния, водорода) и их соединений.
	Характеристика состава, строения, свойств, получения и применения
	важнейших классов углеводородов (алканов, циклоалканов, алкенов,
	алкинов, аренов) и их наиболее значимых в народнохозяйственном плане
	представителей.
	Аналогичная характеристика важнейших представителей других классов
	органических соединений: метанола и этанола, сложных эфиров, жиров, мыл, альдегидов (формальдегидов и ацетальдегида), кетонов (ацетона),
	карбоновых кислот (уксусной кислоты, для естественно-научного профиля
	представителей других классов кислот), моносахаридов (глюкозы),
	дисахаридов (сахарозы), полисахаридов (крахмала и целлюлозы), анилина,
	аминокислот, белков, искусственных и синтетических волокон, каучуков,
	пластмасс
	Использование в учебной и профессиональной деятельности химических
	терминов и символики.
Химический язык	Название изученных веществ по тривиальной или международной
и символика	номенклатуре и отражение состава этих соединений с помощью химических
n Chwdolina	формул.
	Отражение химических процессов с помощью уравнений химических
	реакций

Химические реакции	Объяснение сущности химических процессов. Классификация химических реакций по различным признакам: числу и составу продуктов и реагентов, тепловому эффекту, направлению, фазе, наличию катализатора, изменению степеней окисления элементов, образующих вещества. Установка признаков общего и различного в типологии реакций для неорганической и органической химии. Классифицикация веществ и процессов с точки зрения окислениявосстановления. Составление уравнений реакций с помощью метода электронного баланса. Объяснение зависимости скорости химической реакции и положения химического равновесия от различных факторов
Химический эксперимент	Выполнение химического эксперимента в полном соответствии с правилами безопасности. Наблюдение, фиксация и описание результатов проведенного эксперимента
Химическая информация	Проведение самостоятельного поиска химической информации с использованием различных источников (научно-популярных изданий, компьютерных баз данных, ресурсов Интернета). Использование компьютерных технологий для обработки и передачи химической информации и ее представления в раз личных формах
Расчеты по химическим формулам и уравнениям	Установка зависимости между качественной и количественной сторонами химических объектов и процессов. Решение расчетных задач по химическим формулам и уравнениям
Профильное и профессионально значимое содержание	Объяснение химических явлений, происходящих в природе, быту и на производстве. Определение возможностей протекания химических превращений в различных условиях. Соблюдение правил экологически грамотного поведения в окружающей среде. Оценка влияния химического загрязнения окружающей среды на организм человека и другие живые организмы. Соблюдение правил безопасного обращения с горючими и токсичными веществами, лабораторным оборудованием. Подготовка растворов заданной концентрации в быту и на производстве. Критическая оценка достоверности химической информации, поступающей из разных источников

Учебно-методическое и материально-техническое обеспечение программы общеобразовательной учебной дисциплины

Реализация программы дисциплины требует наличия учебной лаборатории химии, каб.№16/16а.

Оснашенность:

- 1) ноутбук, компьютер, мультимедийный проектор, экран, стол компьютерный, принтер лазерный, МФУ, графопроектор, химическая микролаборатория, Цифровой микроскоп, коллекции, наборы реактивов, химическая посуда, деменстрационный химический стол, шкафы, стенды, дистиллятор и другое оборудование.
 - 2) электронные ресурсы дисциплины

Презентации:

- 1. Законы и понятия химии.
- 2. Диссоциация.
- 3. Углерод.
- 4. Азот
- 5. Азотная кислота
- 6. Производство аммиака
- 7. Алюминий.
- 8. Железо.
- 9. Как примирить металлургию с природой?
- 10. Спирты, фенолы
- 11. Альдегиды, кетоны.
- 12. Карбоновые кислоты.
- 13. Углеводы.
- 14. Аминокислоты. Белки.
- 15. Амины.

- 16. Металлы.
- 17. Кислотные дожди.
- 18. Влияние этанола.
- 19. Алкоголь.
- 20. Уксусная кислота.
- 21. Полимеры.
- 22. Ферменты.
- 23. Витамины.
- 24. Гормоны.
- 25. Вода.
- 26. Полимеры и волокна
- 27. Уксусная кислота
- 28. Химия пищи.
- 29. Что мы пьем? (химия напитков)
- 30. Химия вокруг нас.

Электронные уроки и тесты (на дисках):

- 1. Строение атомов
- 2. Типы химических связей.
- 3. Периодический закон и строение атома.
- 4. Законы химии.
- 5. Оксиды неметаллов и металлов.
- 6. Кислоты, классификация, диссоциация.
- 7. Свойства оснований.
- 8. Соединения углерода. Известняковые породы, значение.
- 9. Гипс.
- 10. Оксид кремния. Стекло.
- 11. Металлы.
- 12. Металлы, распространение, получение, свойства.
- 13. Углерод, аллотропия.
- 14. Угольная кислота.
- 15. Смеси веществ.
- 16. Алканы, гомологический ряд, свойства, применение.
- 17. Этилен непредельный углеводород, строение. Свойства.

- 18. Полиэтилен и другие пластики.
- 19. Ацетилен и его свойства.
- 20. Природные источники углеводородов.
- 21. Уголь. Нефть и ее свойства.
- 22. Спирты. Метанол и этанол. Свойства, значение.
- 23. Карбоновые кислоты, особенности свойств, диссоциация.
- 24. Мыла и детергенты.
- 25. Эфиры, получение, некоторые свойства.
- 26. Жиры, строение, свойства
- 27. Структуры белков.
- 28. Крахмал.
- 29. Целлюлоза.
- 30. Углеводы. Глюкоза. Фруктоза. Структуры белков.
- 31. Мультимедийная обучающая программ «1С: Репетитор. Химия»,

Учебные таблицы

- 1. Комплект таблиц «Органические вещества».
- 2. Комплект таблиц по неорганической химии.
- 3. Комплект таблиц «Химия в сельском хозяйстве»

Учебно-методическое обеспечение

- 1. Примерная программа учебной дисциплины «Химия»
- 2. Методические указания по выполнению самостоятельных работ по дисциплине «Химия» для обучающихся первого курса.
- 3. Методические рекомендации по организации проектной деятельности в процессе изучения дисциплины «Химия».
- 4. Обобщающий проект «Химия и мы». Методические рекомендации по организации проектной деятельности в процессе изучения дисциплины «Химия».
- 5. Методическая разработка урока заочной экскурсии по химии «В мире металлов» (обобщающий урок).
- 6. Методическая разработка игры эстафеты по химии «В поисках чистой воды».
- 7. Методическая разработка деловой игры по химии «Черная металлургия. Сплавы железа».
- 8. Методические рекомендации для преподавателей СПО «Экологический аспект на уроках химии».
- 9. Методическая разработка игры с использованием компьютерной презентации «Проще простого».
- 10. Методические рекомендации «Организация внеклассной работы по химии».
- 11. Методические рекомендации «Экологический аспект внеклассной работы по химии».
- 11. Методический доклад «Организация компьютерной поддержки при изучении химии».
- 12. Методический доклад «Проектно-исследовательская деятельность как средство развития естественной познавательной активности обучающегося и его самореализации». Методическая разработка игры с использованием компьютерной презентации «Проще простого».
- 13. Тестовые задания для промежуточного контроля знаний (модули 1,2,3,4)
- 14. Вопросы к зачету по дисциплине.
- 15. Экзаменационные билеты для дисциплины.
- 16. Фонд оценочных средств по учебной дисциплине «Химия».
- 17. Комплект инструкционных карт для проведения практических занятий по дисциплине «Химия».

ЛИТЕРАТУРА

Основные источники:

1.Химия: учебник для среднего профессионального образования [электронный ресурс]/ Ю. А. Лебедев, Г. Н. Фадеев, А. М. Голубев, В. Н. Шаповал; под общей редакцией Г. Н. Фадеева. — Электрон. дан. — 2-е изд., перераб. и доп. — Москва: Издательство Юрайт, 2022. — 431 с. — Режим доступа: https://urait.ru/bcode/491035

2.Глинка, Н. Л. Общая химия. Задачи и упражнения: учебно-практическое пособие для среднего профессионального образования [электронный ресурс]/ Н. Л. Глинка; под редакцией В. А. Попкова, А. В. Бабкова. — Электрон. дан. — 14-е изд. — Москва: Издательство Юрайт, 2022. — 236 с. — Режим доступа: https://urait.ru/bcode/490165

Дополнительные источники:

- 1. Олейников, Н. Н. Химия. Алгоритмы решения задач и тесты: учебное пособие для среднего профессионального образования [электронный ресурс]/ Н. Н. Олейников, Г. П. Муравьева. 3-е изд., испр. и доп. Электрон. дан. Москва: Издательство Юрайт, 2022. 249 с. Режим доступа: https://urait.ru/bcode/491790.
- 2.Смарыгин, С. Н. Неорганическая химия. Практикум: учебно-практическое пособие [электронный ресурс]/ С. Н. Смарыгин, Н. Л. Багнавец, И. В. Дайдакова. Электрон. дан. Москва: Издательство Юрайт, 2022. 414 с. Режим доступа: https://urait.ru/bcode/509103.
- 3.Тупикин, Е. И. Химия в сельском хозяйстве: учебное пособие для среднего профессионального образования [электронный ресурс] / Е. И. Тупикин. Электрон. дан. 2-е изд., испр. и доп. Москва: Издательство Юрайт, 2022. 184 с. Режим доступа: https://urait.ru/bcode/491664.

3.2.1 Информационные и цифровые технологии (программное обеспечение, современные профессиональные базы данных и информационные справочные системы)

Учебная дисциплина (модуль) предусматривает освоение информационных и цифровых технологий. Реализация цифровых технологий в образовательном пространстве является одной из важнейших целей образования, дающей возможность развивать конкурентоспособные качества обучающихся как будущих высококвалифицированных специалистов.

Цифровые технологии предусматривают развитие навыков эффективного решения задач профессионального, социального, личностного характера с использованием различных видов коммуникационных технологий. Освоение цифровых технологий в рамках данной дисциплины (модуля) ориентировано на способность безопасно и надлежащим образом получать доступ, управлять, интегрировать, обмениваться, оценивать и создавать информацию с помощью цифровых устройств и сетевых технологий. Формирование цифровой компетентности предполагает работу с данными, владение инструментами для коммуникации.

3.2.2 Электронно-библиотечные системы и базы данных

1. ООО «ЭБС ЛАНЬ» (https://e.lanbook.ru/) (договор на оказание услуг от 03.04.2024 № б/н (Сетевая электронная библиотека)

- 2. База данных электронных информационных ресурсов ФГБНУ ЦНСХБ (договор по обеспечению доступа к электронным информационным ресурсам ФГБНУ ЦНСХБ через терминал удаленного доступа (ТУД ФГБНУ ЦНСХБ) от 09.04.2024 № 05-УТ/2024)
- 3. Электронная библиотечная система «Национальный цифровой ресурс «Руконт»: Коллекции «Базовый массив» и «Колос-с. Сельское хозяйство» (https://rucont.ru/) (договор на оказание услуг по предоставлению доступа от 26.04.2024 № 1901/БП22)
- 4. ООО «Электронное издательство ЮРАЙТ» (https://urait.ru/) (договор на оказание услуг по предоставлению доступа к образовательной платформе ООО «Электронное издательство ЮРАЙТ» от 07.05.2024 № 6555)
- 5. Электронно-библиотечная система «Вернадский» (https://vernadsky-lib.ru) (договор на безвозмездное использование произведений от 26.03.2020 № 14/20/25)
- 6. База данных НЭБ «Национальная электронная библиотека» (https://rusneb.ru/) (договор о подключении к НЭБ и предоставлении доступа к объектам НЭБ от 01.08.2018 № 101/НЭБ/4712)
- 7. Соглашение о сотрудничестве по оказанию библиотечно-информационных и социокультурных услуг пользователям университета из числа инвалидов по зрению, слабовидящих, инвалидов других категорий с ограниченным доступом к информации, лиц, имеющих трудности с чтением плоскопечатного текста ТОГБУК «Тамбовская областная универсальная научная библиотека им. А.С. Пушкина» (https://www.tambovlib.ru) (соглашение о сотрудничестве от 16.09.2021 № б/н)

3.2.3 Информационные справочные системы

- 1. Справочная правовая система КонсультантПлюс (договор поставки, адаптации и сопровождения экземпляров систем КонсультантПлюс от 11.03.2024 № 11921 /13900/ЭС)
- 2. Электронный периодический справочник «Система ГАРАНТ» (договор на услуги по сопровождению от 15.01.2024 № 194-01/2024)

3.2.4. Современные профессиональные базы данных

- 1. База данных нормативно-правовых актов информационно-образовательной программы «Росметод» (договор от 15.08.2023 № 542/2023)
- 2. База данных Научной электронной библиотеки eLIBRARY.RU российский информационно-аналитический портал в области науки, технологии, медицины и образования https://elibrary.ru/
 - 3. Портал открытых данных Российской Федерации https://data.gov.ru/
- 4. Открытые данные Федеральной службы государственной статистики https://rosstat.gov.ru/opendata

3.2.5. Лицензионное и свободно распространяемое программное обеспечение, в том числе отечественного производства

№	Наименование	Разработчик ПО (правообладате	Доступность (лицензионное, свободно	Ссылка на Единый реестр российских программ для ЭВМ	Реквизиты подтверждающего документа (при
		ль)	распространяем	и БД (при наличии)	наличии)

			oe)		
1	Microsoft Windows, Office Professional	Microsoft Corporation	Лицензионное	-	Лицензия от 04.06.2015 № 65291651 срок действия: бессрочно
2	Антивирусное программное обеспечение Kaspersky Endpoint Security для бизнеса	АО «Лаборатория Касперского» (Россия)	Лицензионное	https://reestr.digital.g ov.ru/reestr/366574/? sphrase_id=415165	Сублицензионный договор с ООО «Софтекс» от 24.10.2023 № б/н, срок действия: с 22.11.2023 по 22.11.2024
3	МойОфис Стандартный - Офисный пакет для работы с документами и почтой (myoffice.ru)	ООО «Новые облачные технологии» (Россия)	Лицензионное	https://reestr.digital.g ov.ru/reestr/301631/? sphrase_id=2698444	Контракт с ООО «Рубикон» от 24.04.2019 № 03641000008190000 12 срок действия: бессрочно
4	Офисный пакет «Р7-Офис» (десктопная версия)	AO «P7»	Лицензионное	https://reestr.digital.g ov.ru/reestr/306668/? sphrase_id=4435041	Контракт с ООО «Софтекс» от 24.10.2023 № 03641000008230000 07 срок действия: бессрочно
5	Операционная система «Альт Образование»	ООО "Базальт свободное программное обеспечение"	Лицензионное	https://reestr.digital.g ov.ru/reestr/303262/? sphrase_id=4435015	Контракт с ООО «Софтекс» от 24.10.2023 № 03641000008230000 07 срок действия: бессрочно
6	Программная система для обнаружения текстовых заимствований в учебных и научных работах «Антиплагиат ВУЗ» (https://docs.antiplagia us.ru)	АО «Антиплагиат» (Россия)	Лицензионное	https://reestr.digital.g ov.ru/reestr/303350/? sphrase_id=2698186	Лицензионный договор с АО «Антиплагиат» от 23.05.2024 № 8151, срок действия: с 23.05.2024 по 22.05.2025
7	Acrobat Reader - просмотр документов PDF, DjVU	Adobe Systems	Свободно распространяем ое	-	-
8	Foxit Reader - просмотр документов PDF, DjVU	Foxit Corporation	Свободно распространяем ое	-	-

3.2.6. Ресурсы информационно-телекоммуникационной сети «Интернет»

1. CDTOwiki: база знаний по цифровой трансформации https://cdto.wiki/

3.2.7. Цифровые инструменты, применяемые в образовательном процессе

- 1. LMS-платформа Moodle
- 2. Виртуальная доска Миро: miro.com
- 3. Виртуальная доска SBoard https://sboard.online
- 4. Виртуальная доска Padlet: https://ru.padlet.com
- 5. Облачные сервисы: Яндекс. Диск, Облако Mail.ru
- 6. Сервисы опросов: Яндекс.Формы, MyQuiz
- 7. Сервисы видеосвязи: Яндекс.Телемост, Webinar.ru
- 8. Сервис совместной работы над проектами для небольших групп Trello http://www.trello.com

3.2.8. Цифровые технологии, применяемые при изучении дисциплины

No	Цифровые технологии	Виды учебной работы, выполняемые с	
		применением цифровой технологии	
1.	Облачные технологии	Индивидуальные задания	
2.	Большие данные	Индивидуальные задания	

Рабочая программа разработана на основе федерального государственного образовательного стандарта среднего общего образования (ФГОС СОО), утвержденного Приказом Министерства образования и науки РФ от 17 мая 2012 г. № 413; в соответствии с методическими рекомендациями по реализации среднего общего образования в пределах освоения образовательной программы среднего профессионального образования на базе основного общего образования, утвержденными Министерством просвещения Российской Федерации 14.04.2021 года.

Автор:

Белоусова О.А., преподаватель высшей квалификационной категории центра–колледжа прикладных квалификаций ФГБОУ ВО Мичуринский ГАУ,

Рецензент:

Филиппова Т.И. преподаватель высшей квалификационной категории центра—колледжа прикладных квалификаций ФГБОУ ВО Мичуринский ГАУ

Программа рассмотрена на заседании ЦМК общеобразовательных дисциплин протокол N = 9 от «17» апреля 2020 г.

Программа рассмотрена на заседании учебно-методической комиссии центра-колледжа прикладных квалификаций ФГБОУ ВО Мичуринский ГАУ протокол № 8 от «20» апреля 2020 г.

Программа утверждена Решением Учебно-методического совета университета протокол $Noldsymbol{N} 8$ от <23» апреля <2020 г.

Программа переработана и дополнена в соответствии с требованиями ФГОС СОО Программа рассмотрена на заседании ЦМК общеобразовательных дисциплин протокол № 9 от «19» апреля 2021 г.

Программа рассмотрена на заседании учебно-методической комиссии центра-колледжа прикладных квалификаций ФГБОУ ВО Мичуринский ГАУ протокол № 8 от «21» апреля 2021 г.

Программа утверждена Решением Учебно-методического совета университета протокол № 8 от «22» апреля 2021 г.

Программа переработана и дополнена в соответствии с требованиями ФГОС СОО Программа рассмотрена на заседании ЦМК общеобразовательных дисциплин протокол N = 9 от «18» апреля 2022 г.

Программа рассмотрена на заседании учебно-методической комиссии центра-колледжа прикладных квалификаций $\Phi\Gamma$ БОУ ВО Мичуринский Γ АУ протокол № 9 от «20» апреля 2022 г.

Программа утверждена Решением Учебно-методического совета университета протокол № 8 от «21» апреля 2022 г.

Программа переработана и дополнена в соответствии с требованиями ФГОС СОО Программа рассмотрена на заседании ЦМК общеобразовательных дисциплин протокол № 11 от «16» июня 2023 г.

Программа рассмотрена на заседании учебно-методической комиссии центра-колледжа

прикладных квалификаций ФГБОУ ВО Мичуринский ГАУ протокол № 11 от «17» июня 2023 г.
Программа утверждена Решением Учебно-методического совета

Программа утверждена Решением Учебно-методического совета университета протокол Neq 10 от (22) июня 2023 г.

Программа переработана и дополнена в соответствии с требованиями ФГОС СОО Программа рассмотрена на заседании ЦМК общеобразовательных дисциплин протокол N = 9 от «16» апреля 2024 г.

Программа рассмотрена на заседании учебно-методической комиссии центра-колледжа прикладных квалификаций ФГБОУ ВО Мичуринский ГАУ протокол № 9 от «17» апреля 2024 г.

Программа утверждена Решением Учебно-методического совета университета протокол $N \ge 8$ от «18» апреля 2024 г.

Оригинал должен храниться в ЦМК общеобразовательных дисциплин